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Charged bosons and the coherent state 

Debajyoti Bhaumikt, Kamales BhaumikS and Binayak Dutta-Roy$ 
t Bose Institute, Calcutta, India 
$ Saha Institute of Nuclear Physics, Calcutta, India 

Received 4 May 1976 

Abstract. The coherent state for charged bosons is constructed, its properties are investi- 
gated and the corresponding classical model is discussed. 

1. Introduction 

The coherent state was first constructed (Schrodinger 1926, Glauber 1963) for the 
simple harmonic oscillator. The Hamiltonian of the system 

H = p 2 / 2 m  +$mw2x2 (1) 

H =  h @ ( U + U  +$) (2) 

U = (p - imw~) / (2moh) ' /~  u t  = (p + i m ~ x ) / ( 2 m o h ) ' / ~ .  (3) 

may be rewritten as 

by defining annihilation and creation operators 

The eigenstates of the Hamiltonian, In), belonging to the energy eigenvalue 
E,, = hw(n +$), where n is a non-negative integer, may then be obtained with the 
properties 

uta  In) = n In) u+ln) = ( n  + 1)'/21n + 1) a In) = n 1'21n - 1). (4) 
The coherent state may then be constructed out of these states thus 

where a is a complex number and the factor outside the summation is the normalization 
constant. The coherent state la) is an eigenstate of the annihilation operator a, namely 

(6) a la) = a la). 

/a)-exp(-a*a +au+)10) (7) 

The coherent state may also be written in the form 

and is thus 'a displacement of the vacuum'. The coherent states form a complete (albeit 
an overcomplete) set in the sense that 
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where the integration is over the whole complex a plane. The coherent state constitutes 
a state of minimum uncertainty, namely 

h p h x  = $h. (9) 

Since the coherent state is a non-stationary state it develops with time in an interesting 
manner and, taking a(t = 0) = A e-ie, it follows that 

(a, t(Xla,  t) = [ 2A (k) ”’1 sin(ot + 0). 

Identifying the constant in square brackets with the amplitude, the expectation value of 
the displacement in the coherent state behaves like the displacement of a classical 
oscillator. In this sense the coherent state is called a ‘classical state’. 

The coherent state has found widespread applications (Glauber 1969, Klauder and 
Sudarshan 1968, Perina 1971) in nonlinear optics and laser physics, in the discussion of 
the superfluid state (Langer 1969) and in nuclear physics (Bhaumik et a1 1975). 
However, in all these cases the quanta involved are uncharged and the type of coherent 
state discussed above is adequate. Recent attempts (Botke et a1 1974) to use the 
coherent state basis for the description of pion production in high-energy collisions 
necessitate the present discussion of the coherent state for charged bosons. We 
therefore discuss in the present paper the construction, properties and corresponding 
classical model of the coherent state for bosons possessing some ‘charge’ which is 
absolutely conserved. 

2. Coherent state for charged bosons 

The coherent state is a superposition of states containing different numbers of quanta 
phase-locked in the manner depicted in equation (5 ) .  However, if these quanta possess 
some absolutely conserved ‘charge’ Q it is impossible to construct coherent superposi- 
tions of states with different values of Q or to measure the corresponding phases. This is 
the content of the superselection rule (Wick et a1 1952). Thus coherent states for 
charged quanta need careful consideration. 

Let us introduce ‘charge’ by defining two types of quanta possessing ‘charge’ +1 and 
-1 with corresponding annihilation operators a and b. Thus 

[a, a’] = 1 = [b, b ‘3 [a, a ]  = 0 = [b ,  b ]  [a, b ]  = 0 = [ a  ’, bl (1 1) 

and the charge operator is given by 

Q = uta  - b’b. (12) 
Clearly the charge operator Q does not commute with a or with b. Therefore we cannot 
demand that the coherent state be simultaneously an eigenstate of the charge and the 
annihilation operators a or b. Nevertheless, in view of the fact that 

[Q, ab1 = 0 
we may define the modified coherent state I&9) for charged quanta to be simultane- 
ously an eigenstate of Q and ab belonging to the eigenvalues q and 5 (a complex 
number) respectively; thus 

Q15, 9) = &, 9) ab15,q) = 5(5,9>. (14) 
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This state can easily be constructed out of eigenstates In, m )  where 

a+a (n ,  m ) =  n(n, m )  btbln, m) = mln, m) (15) 

to yield 

where the normalization constant Nq is given by 

where Jq is the Bessel function of order q. This coherent state may also be generated 
from the vacuum state (Schwinger 1965). Thus 

Fq(afbt5)atq10) (18a) 
is the coherent state except for a normalization factor. The function Fq is given by 

The above expressions are for q > 0 and analogous expressions for 9 < 0 are obtained by 
replacing a by b. These states constitute a complete set of states in the sense that 

Kq(z)  =$Ti exp(~.rrq)(J,(iz)+iN,(iz)). (206) 
The coherence of the conventional coherent states (discussed in § 1) is realized through 
the correlation of signals from photon counters. For the coherent states defined here 
for charged quanta, the coherence is manifested by replacing the photon counters by 
detectors which respond to the simultaneous detection of positive and negative quanta. 

The coherent state for charged quanta may also be obtained by projecting out a state 
of definite charge from the two-mode coherent state 

which does not have a definite charge. This is accomplished by putting 

, (22) a = A  e-i(e+v) 

and observing that the state 

p = CL e-i(e-v) 

is identical to the charged coherent state, equation (16), if we make the identification 
,-2ie - - 5. 
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Introducing the ‘coordinates’ corresponding to the a and b quanta 

it is easily seen that the average displacements of the two oscillators vanish and that 

In order to investigate in what sense these states are ‘classical’ it is useful to consider the 
classical limit (h  + 0,151 +CO: h t  + finite limit) of the above expectation values. Thus the 
relevant expectation values are given by 

(5; Slxi15; 9 )=0=(5;  91x215; 9 )  (26a) 

It may be observed that 

h 
(5; q)(X:-x;j5; 9)=---9 +OCh/I5I,. (27) 

Equation (27), expressing the charge as the semiclassical approximation to the expecta- 
tion value of (x:-x:) provides the clue to the construction of the classical analogue. 
Siwe the energy of a classical oscillator is proportional to the square of the amplitude, 
the classical analogue of a state with definite charge is obtained by constraining the two 
oscillators described by the Hamiltonian 

to oscillate, keeping the difference of their action functions 

_ _ _ -  - fixed. El E2 
W O  

This quantity is taken to be proportional to the ‘charge’. The role of this ‘charge’ in the 
motion of the classical oscillators is further clarified by performing a canonical transfor- 
mation (Goldstein 1950), from (xl, x2, pl,  p2) to (Xl, X 2 ,  P1, P2),  through the generat- 
ing function 

F(x,, x,) =Im(x:cot  XI +x: cot X, )  (30) 

W (P1+ P2). (31) 

whence the transformed Hamiltonian becomes 
K = H =  
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Thus Xi and P, take the role of (phase) angle and action variables, and 

is canonically conjugate to ;(X, - X 2 )  which is the relative phase between the two 
oscillators. Thus if one fixes the ‘charge’, namely the quantity (P1 -P2) ,  the various 
possible motions differ from each other in the relative phase cp of the two motions given 
by 

x1  = A  sin(wt+B+cp) ( 3 3 a )  

x 2  = B sin(ot + 0 - cp). (33b)  

If Fcl is a classical dynamical variable of this system with the ‘charge’ held fixed, the 
average, FcI, of this quantity over all motions of the system in the state of given ‘charge’ 
(here (P1 -P2)) is obtained by taking an average (Messiah 1967) over the relative phase 
of the two oscillators (which is canonically conjugate to the ‘charge’). Thus 

xlxz = AB C O S ( ~ B  + 2 4 .  ( 3 4 4  

Comparing these results with the classical limits of the quantal expectation values 
(equations (26)) we see that these are in agreement provided we identify A’ = B 2  = 
2hl[( /mw. It may also be observed that (X:>-(X:)+O in the classical limit and the 
‘charge’ is thus a semiclassical quantity. It is in the sense discussed above that the 
modified coherent states for charged quanta discussed in this paper are ‘classical’. 

The coherent states for charged bosons have thus been constructed, their properties 
investigated and the corresponding classical model has been discussed. 
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